基于非平衡大数据的公司破产评估模型研究 |
点此下载全文 |
引用本文:李田雨1,高煌婷2,翟亚琪2.基于非平衡大数据的公司破产评估模型研究[J].财经理论与实践,2025,(2):43-50 |
摘要点击次数: 68 |
全文下载次数: 35 |
|
|
中文摘要:大数据环境下,应用机器学习数据挖掘分析技术对波兰破产及未破产公司的财务数据进行建模训练和测试验证,其中包括多层感知器中的SMOTE、SMOTE-Borderline1和BMS不平衡算法。横向对比发现SMOTE、SMOTE-Borderline1、BMS算法有效提升了F1-Score,证明了多层感知器算法在公司破产评估领域内处理非平衡类别数据手段的有效性。纵向对比表明在不同的预测时间跨度上,MLP模型和公司财务数据的分类器模型效果具有显著差异。最后,使用卡方检验筛选出公司短期负债、资金结构和经营利润等较为重要的财务指标。 |
中文关键词:机器学习 多层感知器算法 破产评估模型 MLP模型 |
|
Research on the Corporate Bankruptcy Evaluation Model Based on Unbalanced Data |
|
|
Abstract:Within the context of big data, this study employs machine learning and data mining techniques to model, train, and validate the financial data of bankrupt and non-bankrupt companies in Poland, including the application of SMOTE, SMOTE-Borderline1, and BMS, which are algorithms designed to handle imbalanced data within the multi-layer perceptron framework. A horizontal comparison revealed that the SMOTE, SMOTE-Borderline1, and BMS algorithms effectively enhanced the F1-Score, thereby substantiating the efficacy of multilayer perceptron algorithms in addressing imbalanced categorical data within the domain of corporate bankruptcy assessment. A vertical comparison indicated significant differences in the performance of the MLP model and the classifier model based on corporate financial data across various predictive periods. Ultimately, chi-squared tests were utilized to identify key financial indicators, such as short-term liabilities, capital structure, and operating profits, as being of considerable importance. |
keywords:machine learning multi-layer perceptron algorithm bankruptcy evaluation model MLP model |
查看全文 查看/发表评论 下载pdf阅读器 |
|
|
|